
CSCI 210: Computer Architecture

Lecture 5: MIPS

Stephen Checkoway

Oberlin College

Slides from Cynthia Taylor

1

CS History: Nintendo 64
• Released in 1996
• Named after its 64-bit CPU
• Silicon Graphics Inc (SGI) adapted MIPS chips

for supercomputers to use less power and be
cheaper

• "At the heart of the system will be a version
of the MIPS Multimedia Engine, a chip-set
consisting of a 64-bit MIPS RISC
microprocessor, a graphics co-processor chip
and Application Specific Integrated Circuits”
(SGI press release, 1993)

• “If it works at all, it could bring MIPS to levels
of volume [SGI] never dreamed of.” (Michael
Slater, Microprocessor Report)

• Super Mario 64 features a rabbit named MIPS
after the processor

Review: Memory Instructions

• lw $t0, 0($t1)

– $t0 = Mem[$t1+0]

– Loads 4 bytes from $t1, $t1+1, $t1+2, and $t1+3

• sw $t0, 4($t1)

– Mem[$t1+4] = $t0

– Stores 4 bytes at $t1+4, $t1+5, $t1+6, and $t1+7

• These instructions are the cornerstones of our being able to go
to and from memory

Review: If you have a pointer to address 1000 and you increment it by one to 1001.
What does the new pointer point to, relative to the original pointer?

A) The next word in memory

B) The next byte in memory

C) Either the next word or byte – depends on if you use that address for a load byte
or load word

D) Pointers are a high level construct – they don’t make sense pointing to raw
memory addresses.

E) None of the above.

If a 4-byte word is in memory at address 4203084, what is the address of the next
word in memory?

A) 4203085

B) 4203088

C) 14203084

D) It depends on the value of the words in memory

E) Since a word is 4 bytes, it’s not possible to have one at address 4203084

Arrays

• Arrays are stored consecutively in memory

• The base address points to the first element in the array

• Accessing other elements in the array requires adding an offset
to the base address

– The offset to use is the index of the array element * the size of one
element

Memory Operand Example 1

• C code:

 g = h + A[8];

– g in $s1, h in $s2, base address of A in $s3, A is an array of 4 byte ints

• Compiled MIPS code:

– Index 8 requires offset of 32

 lw $t0, 32($s3)
add $s1, $s2, $t0

Translate to MIPS

• C code: g = h + A[5];
– g in $s1, h in $s2, base address of A in $s3.
– A is an array of 4-byte ints

A.

B.

C.

D.

lw $t0, 20($s3)
add $s1, $s2, $t0

lw $t0, 5($s3)
add $s1, $s2, $t0

lw $t0, $s5
add $s1, $s2, $t0

lw $t0, $s3
add $s1, $s2, $t0

Memory Operand Example 2

• C code:

 A[12] = h + A[8];

– h in $s2, base address of A in $s3

• Compiled MIPS code:

– Index 8 requires offset of 32

 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

When a 2-byte word is stored in byte-addressed
memory (occupying two consecutive bytes), is the
most significant byte (MSB) stored in the lower
address or the higher address?

A. Low

B. High

C. It Depends

0000 0000

0000 1111

0000 0000

0000 1111
= 15

= 15

0

1

0

1

Byte ordering

• Big-endian: Most significant byte in lowest address
– MIPS, Network byte order, Motorola 68000, PowerPC (usually), …

• Little-endian: Most significant byte in highest address
– Intel x86, x86-64, ARM (usually), …

• Bi-endian: Switchable between big and little endian
– ARM, PowerPC, Alpha, SPARC, …

• Middle-endian/mixed-endian
– Bytes not stored in either order, at least in some cases
– Words stored one endian, bytes within words stored another endian
– PDP-11 stored 16-bit words in little-endian order, but 32-bit words in big-endian

order

Big-endian means most significant byte/digit/piece comes first, little-
endian means least significant byte/digit/piece comes first. Mixed-
endian means not in order.

Which row of the table correctly identifies the endianness of date
formats?

US (MM-DD-YYYY) Most of the world (DD-MM-YYYY) ISO 8601 (YYYY-MM-DD)

A Little Mixed Big

B Big Little Mixed

C Mixed Little Big

D Mixed Big Little

E Little Big Mixed

Questions about Memory?

Immediate Operands

• Constant data specified in an instruction
– addi $s3, $s3, 4

– li $t0, -25 # Pseudoinstruction: addi $t0, $zero, -25

– ori $v0, $t8, 1

Subtract 2 from $s0 and store in register $s1

A.addi $s0, $s1, -2

B.addi $s1, $s0, -2

C.subi $s0, $s1, 2

D.subi $s1, $s0, 2

E. More than one of the above

Pseudoinstructions

• move dest, src => add dest, $zero, src

• subi dest, src, imm => addi dest, src, -imm

• li dest, imm => addi dest, $zero, imm

• More complicated expansions are possible, MARS simulator
will show you how it expands pseudoinstructions

MIPS Design Principles

• Simplicity favors regularity
– fixed size instructions

– small number of instruction formats

• Smaller is faster
– limited instruction set

– limited number of registers in register file

• Make the common case fast
– arithmetic operands from the register file (load-store machine)

– allow instructions to contain immediate operands

Loading a large number into a register

• Immediates are limited to 16 bits

– -32768 to 32767 or 0 to 65535

• Numbers outside this range need to be loaded into registers
before being used

• load upper immediate instruction sets the most-significant 16
bits of a register

– lui $t0, 0x1234
ori $t0, $t0, 0x5678

• When li is given a value that’s too large, the assembler expands
it to lui/ori

MIPS Questions?

Why we need to learn binary (and other number
systems)

• Fundamental to how your computer works

– Will need a good grasp of binary to understand things like logical
operations

– Will need it a lot when we get to logic gates and how the CPU works

– Will need to translate to binary to work out examples

• Need to understand it to understand many things like network
protocols (IP addresses), bit masking, etc.

Positional Notation

• The meaning of a digit depends on its position in a number.

• A number, written as the sequence of digits dndn-1…d2d1d0 in
base b represents the value

dn * bn + dn-1 * bn-1 + ... + d2 * b2 + d1 * b1 + d0 * b0

Consider 101

• In base 10, it represents the number 101 (one hundred one) =

• In base 2, 1012 =

• In base 8, 1018 =

1015 = ?

A. 26

B. 51

C. 126

D. 130

101-3=?

A. -10

B. 8

C. 10

D. -30

Reading

• Next lecture: Number Representation

– Section 2.4

• Problem Set 1 – due Friday

26

	Slide 1: CSCI 210: Computer Architecture Lecture 5: MIPS
	Slide 3: CS History: Nintendo 64
	Slide 4: Review: Memory Instructions
	Slide 5
	Slide 6
	Slide 7: Arrays
	Slide 8: Memory Operand Example 1
	Slide 9: Translate to MIPS
	Slide 10: Memory Operand Example 2
	Slide 11: When a 2-byte word is stored in byte-addressed memory (occupying two consecutive bytes), is the most significant byte (MSB) stored in the lower address or the higher address?
	Slide 12: Byte ordering
	Slide 13
	Slide 14: Questions about Memory?
	Slide 15: Immediate Operands
	Slide 16: Subtract 2 from $s0 and store in register $s1
	Slide 17: Pseudoinstructions
	Slide 18: MIPS Design Principles
	Slide 19: Loading a large number into a register
	Slide 20: MIPS Questions?
	Slide 21: Why we need to learn binary (and other number systems)
	Slide 22: Positional Notation
	Slide 23: Consider 101
	Slide 24: 1015 = ?
	Slide 25: 101-3=?
	Slide 26: Reading

